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Thermoacoustic generation in anisotropic media
John A. Hildebrand
Marine Physical Laboratory, A-005, Scripps Institution of Oceanography, University of California, San Diego,
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The generation of acoustic waves by a modulated thermal source is examined for anisotropic .":
materials. A wave equation is developed to include the effect of a thermoacoustic source for the
anisotropic case. The dependence of the thermoacoustic source term upon the material elastic
constants is identified for a thermal source varying in one dimension. This dependence is
examined for several classes of crystalline anisotropy and it is found that thermoacoustic
generation varies with crystallographic orientation. The directions of maximum and minimum
thermoacoustic generation are not consistent for a given crystal class and are dependent upon the
specific values of the elastic constants for the material.

PACS numbers: 43.35.Ud

INTRODUCTION

* It has long been known that a modulated thermal source l"
may be used to create acoustic waves. The effect was discov- Il
ered in the 1880s by Alexander Graham Bell,' who studied S = c n ( )
the audible sound generated by illuminating matter with a 10"
periodically interrupted light. The basic principle of ther- ...
moacoustic generation within a solid involves the coupling

* of energy from thermal expansion and contraction into an
aoui e.gy fromtherolemal ofpa th acoutiactn gntoan where a and E are taken to be scalar quantities. The strainacoustic wave.2 The problem of thermoacoustic generation due to acoustic waves in the material S can be obtained
at the surface of an isotropic solid was studied by White,' from the difference between the total strain S and the tern-

who related the production of elastic waves to thermal and fr the assoca te strain S -e

elastic properties of the solid. More recently, thermoacous- peauesoitdrinS
tic generation at the surface of a solid has been used as a S. = S e-S, (2)
means of spectroscopic characterization' and as a source for giving the strain displacement relation, %
imaging.' Thermoacoustic generation is a particularly useful S,=Vu-S., (3)-
technique to study the thermal and elastic properties of thin
layers of material because thermoacoustic waves can be gen- where u is the displacement and V, is the symmetric part of
erated within a layer which is thinner than the generated the displacement gradient. Recall the acoustic equation of
acoustic wavelength. In contrast, a layer several acoustic motion
wavelengths thick is required to interact effectively with ex- '2u
ternally generated acoustic waves. V • T a 2 (4)

This paper assesses the effect of elastic anisotropy on the and the constitutive equation
generation of acoustic waves by a modulated thermal source.
It will be shown that the solid elastic constants enter into the T = c : So, (5)
efficiency of thernmoacoustic generation and this results in an where Tis the stress, p is the density, c is the stiffness matrix,
orientation dependence for thermoacoustic generation with- and the double dot product represents matrix multiplica- I
in anisotropic solids. tion. Substituting S, into the constitutive equation gives

I. THERMOACOUSTIC WAVE EQUATION rI

The first step in this analysis is to develop a wave equa- Il
tion for thermoacoustic generation in anisotropic materials. T = c :S - a c :0 (6)
The presence of a locally nonuniform temperature distribu- ts rhm tc a

tion within the material produces an additional strain with- 0
out a corresponding change in stress.' The thermal strain S( 0-
is proportional to the temperature increase 0 and to the lin-
ear thermal expansion coefficient a. This strain is purely This is the stress-strain relation for thermoacoustic genera-'
dilatational and can be written in abbreviated subscript nota- tion and, if it is simplified to the case of isotropic media, it
tion7 as becomes
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1l II. THERMOACOUSTIC SOURCE TERM
1 The right-hand side of Eq. (8) can be viewed as a source
1 term due to the nonuniform temperature distribution. Ex-

(7) panding this term givesT= c :S -3BaO j 0a .C '1
0 1

V.(c:So) aV c: 0 (9)
which is called the Duhamel-Neumann law,8 where B is the

bulk modulus of elasticity. 0

Combining Eqs. (3)-(5) gives the thermoacoustic ".0i
wave equation' For the most general anisotropic case, there are 21 indepen-

dent constants in the c matrix (e.g., triclinic crystal class)

V.(C:V u)-P 2 =V.(C:SO). (8) and the thermoacoustic source term can be written as fol-
at lows:

V .(c: se) = (c,, + c, 2 + c1 ) + 00 (c,16 + c26 + c36 ) + 0-z (c,5 + c2.5 + C3)a.
ka y a7Z..

+ (c,16 + c26 + c36) + - (C1 2 + c22 + c23) + -- z(C, 4 + c24 + c34) a

+ 2 (C,5 + C25 + c35) + d2 (C,4 + c 24 + C34) + , (C3 + c23 + c33) )a. (10)

Examining the components of the thermoacoustic source dients confined to the.' or !'directions, the elastic portion of
term indicates that thermoacoustic generation is enhanced the source terms becomes
for large thermal gradients, large coefficients of thermal ex-
pansion, and large values for the elastic constants. In addi- + +i(
tion, anisotropic materials allow for generation of acoustic = (c13 + c23 + c33)/c 13. (16)

waves in directions perpendicular to the thermal gradients.
Under the assumption of propagation in an isotropic medi- Ill. THERMOACOUSTIC GENERATION IN CRYSTALS Ilk

um, Eq. (10) becomes The thermoacoustic generation factor/f is given in Ta-

V (c : S,) = 3BaV®. (1!) bles I-V for various examples from the orthorhombic, tetra-
gonal, trigonal, hexagonal, and cubic crystal classes. The

With the additional assumption of purely dilatational dis- values of the elastic constants used to calculate/f were ob- .b
placements, the thermoacoustic wave equation (8) becomes tained from Auld.' The orthorhombic crystals (see Table

c u I) have generation factors3 f,i, and#, which are indepen- %
= 3BaVO, (12) dent because of the independence of the elastic constants

which can also be directly obtained from the Dunhamel- C I1#C22  C-3.1

Neumann law. and
In order to predict the efficiency of thermoacoustic gen- c 2 #c 3 96C23.

eration in anisotropic materials, the thermoacoustic wave Fs
equation (8) will be examined for the simple case of a ther- %pattern is observed for the thermoacoustic generation fac-
mal gradient in one direction. In particular, assume that har-ie ua u pia tmonic thermal energy is absorbed at the boundary between calto ed direciansdisdiTh eretie ac agitu e Fo r ai umhe,..
two semi-infinite media with a resulting thermal distribution sodiumlate l ircton >#s d ffer iodi eacid 6,se >For barm,.;

which varies in the .* direction only. The thermoacoustic sodium niobate, fi >68 >fy; for iodic acid, fi >,8 >g;
wave equation in the Yi direction is then

a2u I a2u (c,,+c, 2 +c,.) a.ax2  vI t 2 C2 ax, (13) TABLE 1. Thermoacoustic generation factor for orthorhombic crystals.

where v = c,/p is the acoustic velocity. The effect of the Material . :
elastic constants on the thermoacoustic source term can now Barium sodium niobate 1.64 1.63 1.76
be isolated to the factor lodic acid' 1.78 1.32 1.39 %

= (C,, +c1 2 +c,3 )/c,,. (14) Rochelle salt' 2.16 1.90 188

Likewise, for thermoacoustic generation due to thermal gra- Piezoelectric crystal, values are calculated using c¢.
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TABLE I!. Thermoacoustic generation factor for tetragonal crystals. TABLE IV. Thermoacoustic generation factor for hexagonal crystals.

Material 6,_ Material #,..

Ammonium dihydrogen phosphate (ADP)' 1.39 2.18 Beryllium oxide 1.47 1.36
Barium titanate 2.20 2.83 Cadmium selenide 2.14 1.94
Calcium molybdate 1.77 1.62 Cadmium sulfide' 2.20 2.09
Indium 2.80 2.84 Titanium, crystal 1.99 1.76
Lead molybdate 2.11 1.97 Zinc oxide 2.08 2.00
Potassium dihydrogen phosphate (KDP)* 1.90 2.01 Zinc sulfide 2.09 1.97 0,_%
Rutile 2.16 1.58 ,%,__ _
Tellurium dioxide 2.31 1.41 ' Piezoelectric crystal, values are calculated using cE.

Piezoelectric crystal, values are calculated using c'.

consistently greater in the transverse directions relative to r "._;
the! direction. However, note that the list in Table IV is only '

and for Rochelle salt, /i, > >/ . Likewise, the range of a sampling of hexagonal crystals and others may deviate
variation of , with direction is different in each case: for from this pattern. Note that in the x-y plane of a hexagonal
Barium sodium niobate, 7%; for iodic acid, 26%; and for "crystal, elastic wave propagation is isotropic resulting in
Rochelle salt, 13%. All three of the orthorhombic crystals in thermoacoustic generation which is independent of direc-
Table I are piezoelectric and the stiffening due to this effect tion.
has been ignored in the calculation of ,i by using CE, the For cubic crystals, the thermoacoustic generation factor
elastic stiffness matrix. The inclusion of piezoelectic effects I8 is equal in the .,.P, and .directions and is designated /io.

in fl could be accomplished by use of c', the elastic stiffness The factor,8 can be calculated for other directions by appli- .r,
at zero electric displacement. cation of a coordinate transformation to the c matrix.' 2 Us- %

For tetragonal, trigonal, and hexagonal crystals, the ing a 450 rotation about the 2 axis, the effective elastic con- 'V
thermoacoustic generation factors are equal in the .i and fi stants for propagation in the [1101 directioq of a cubic
directions , .. , = f3 ) due to the equivalence of the crystal are given as follows:
elastic constants ..'-"

C11 = (C1, + c12 + 2C4,)/2, c 2 = (c,, + c,2 - 2c4)/2,

(17)
and ,

C21 = C . and

For the tetragonal crystals in Table II, no clear pattern = (ci + c 2 + c. )/c,. (18)
emerges for the relative magnitudes of ,8, and ,. The
examples shown are equally divided between cases where

,8... >0,8 and , >fl .. .A substantial difference between TABLE V. Thermoacoust"c generation factor for cubic crystals.
the relative magnitude of,,.,, and,6, is observed for telluri- _TALE_.__e___cust__gnertinfctofocuiccrytal.____
um dioxide (39%), ADP (36%), and rutile (27%), indi- Material &, 16. M ll
cating that for these crystals the magnitude of thermoacous-
tic generation will vary significantly with orientation. Also Aluminum. crystal 2.14 2.04 2.01

Barium fluoride 1.91 1.90 1.89note the large absolute values of , for barium titanate Biut furde 1.4 1.40 1.8 ",-Bismuth germanate' 1.47 1.48 1.48 """

(2.83) and indium (2.84). Bismuth germanium oxide' 1.48 1.80 1.95

For the trigonal crystals in Table III, there is no consis- Diamond 1.49 1.35 1.31 ,

tent pattern for the relative magnitudes of, ., and,. The Europium iron garnet 1.85 1.82 1.81
Gallium arsenide' 1 .91 1 .55 1.46 . p .,

examples show that larger thermoacoustic generation may Gallium phosphide' 1.89 1.55 1.46

be observed in either direction. However, note the consis- Germanium 1.75 1.45 1.37 0-

tently small values of,/ for the trigonal crystals and in parti- Gold, crystal 2.69 2.34 2.25
cular the small/# for quartz (1.22). Indium antimonide' 2.09 1.71 1.61

Indium arsenide' 2.09 1.67 1.57 6
For the hexagonal crystals in Table IV, in each case Indium phosphide" 2.13 1.73 1.62 b

f6t.... >,, indicating that thermoacoustic generation is Iron. crystal 219 1.70 1.58
Lithium fluoride 1.76 1.40 1.31 ,a
Magnesium oxide I 61 1.38 1.31
Nickel, crystal 2.28 1.76 1.64 %

TABLE II1. Thermoacoustic generation factor for trigonal crystals. Silicon 1.77 1.51 1.44

Silver, crystal 2.50 2.01 1.89
Material 0,,.... 0, Sodium fluoride 1.50 1.64 1.69

Strontium titanate 1.64 1.56 1.54
Lithium niobate 1.63 1.73 Tungsten, crystal 1.79 1.79 1.79
Lithium tantalate 1.55 1.69 Yttrium aluminum garnet (YAG) 1.66 1.65 1,64
Quartz 1.22 1.22 Yttrium gallium garnet 1.81 1.7: 1.74 %
Sapphire 1.55 1.46 Yttrium iron garnet (YIG) 1.83 1.84 1.84

Piezoelectric crystal, values are calculated using c . Piezoelectric crystal, values are calculated using c. - -
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By application of an additional rotation about the. axis, the a single crystal class and instead depend upon the specific
elastic constants for propagation in the [ 111 ] direction are values of the elastic constants.
found to be

S= (c, + ~2 + 4c.)/2, ACKNOWLEDGMENTS
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in Table V for various cubic crystals. For most of the exam- Research.
pies in Table V, the relative magnitude of the generation
factor is i1e > f, 10 >fl,21 ,, indicating that thermoacoustic
generation is greatest along an axis [ 100] of the cubic crys-
tals. However, in four cases (bismuth germanate, bismuth 'A. G. Bell, "Upon the production of sound by radiant energy," Philos.

germanium oxide, sodium fluoride, and yttrium iron gar- Mag. 11, 510-528 (1881).

net), the preferred direction for thermoacoustic generation 2A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with .*

is [ 111]. 'R. M. White, "Generation of elastic waves by transient surface heating,"
Experimental investigation of the thermoacoustic effect J. Appl. Phys. 34, 3559-3567 (1963).

in crystalline materials has been reported by Tam and 'A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley,

Leung"3 and by Vladimirtsev et al." Tam and Leung used New York, 1980).

Leotocoung a y geladmted sound to measure the ultra- 'H. K. Wickramasinghe, R. C. Bray. V. Jipson, C. F. Quate, and J. R.
photoacoustically generated sSalcedo, "Photoacoustics on a microscopic scale," Appl. Phys. Lett. 33,
sonic velocity as a function of orientation in a sample of 923-925 (1978); G. S. Cargill, 111, "Ultrasonic imaging in scanning elec-

polycrystalline aluminum. Although their paper does not tron microscopy," Nature 286, 691-693 (1980); C. C. Williams, "High

mention variation in the amplitude of photoacoustic genera- resolution photoacoustic and photothermal imaging" (Ph.D. disserta-
tion, Stanford University, 1984).

tion with crystal orientation, their experimental apparatus is A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Do-
well suited to measurements of this kind. Vladimirtsev et al. ver, New York, 1944). 4th ed., p. 108.

produced photoacoustic generation in piezoelectric crystals 'B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973), '..I
and observed the excitation of normal modes. They observed Vl ,r 7 '''

'I. S. Sokolnikoff, Mathematical Theory of Elasticity (Krieger, Melbourne,
that surface optical defects increased the intensity of photo- FL, 1983), p. 359.

acoustic generation; however, they do not mention variation 'J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland,

in photoacoustic generation with crystal orientation. Amsterdam, 1975), p. 392.
'B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, N

IV. SMMARY1973), Vol. 1, p. 369.IV. SUMMARY "B. A. Auld. Acoustic Fields and Waves in Solids (Wiley. New York.1973) .Vol. 1, p. 3 5.

wave equation has been derived which includes the 1973) Vol. 1, p. 305. 
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n'W. Bond, "The mathematics of the physical properties of crystals," Bell
generation of elastic waves by a modulated thermal source. Syst. Tech. J. 22, 1-72 (1943).

The dependence of the thermoacoustic generation on mate- 'A. C. Tam and W. P. Leung, "Measurement of small elastic anisotropy in

rial elastic constants has been explored for anisotropic mate- solids using laser-induced ultrasonic pulses," Appl. Phys. Lett. 45, 1040- %
1042 (1984).

rials. Although substantial variation in thermoacoustic gen- "Y. V. Vladimirtsev, N. N. Glebova, V. A. Golenishchev-Kutuzov, and S.
eration is predicted for changes in orientation, the directions A. Migachev, "Investigation of the acoustical properties of crystals by "
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